Package: nlcv 0.3.5

nlcv: Nested Loop Cross Validation

Nested loop cross validation for classification purposes for misclassification error rate estimation. The package supports several methodologies for feature selection: random forest, Student t-test, limma, and provides an interface to the following classification methods in the 'MLInterfaces' package: linear, quadratic discriminant analyses, random forest, bagging, prediction analysis for microarray, generalized linear model, support vector machine (svm and ksvm). Visualizations to assess the quality of the classifier are included: plot of the ranks of the features, scores plot for a specific classification algorithm and number of features, misclassification rate for the different number of features and classification algorithms tested and ROC plot. For further details about the methodology, please check: Markus Ruschhaupt, Wolfgang Huber, Annemarie Poustka, and Ulrich Mansmann (2004) <doi:10.2202/1544-6115.1078>.

Authors:Willem Talloen, Tobias Verbeke

nlcv_0.3.5.tar.gz
nlcv_0.3.5.zip(r-4.5)nlcv_0.3.5.zip(r-4.4)nlcv_0.3.5.zip(r-4.3)
nlcv_0.3.5.tgz(r-4.4-any)nlcv_0.3.5.tgz(r-4.3-any)
nlcv_0.3.5.tar.gz(r-4.5-noble)nlcv_0.3.5.tar.gz(r-4.4-noble)
nlcv_0.3.5.tgz(r-4.4-emscripten)nlcv_0.3.5.tgz(r-4.3-emscripten)
nlcv.pdf |nlcv.html
nlcv/json (API)
NEWS

# Install 'nlcv' in R:
install.packages('nlcv', repos = c('https://lcougnaud.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • nlcvRF_R - Nlcv results on random data with random forest feature selection
  • nlcvRF_SHS - Nlcv results on strong hetero signal data with random forest feature selection
  • nlcvRF_SS - Nlcv results on strong signal data a with random forest feature selection
  • nlcvRF_WHS - Nlcv results on weak signal data with random forest feature selection
  • nlcvRF_WS - Nlcv results on weak hetero signal data with random forest feature selection
  • nlcvTT_R - Nlcv results on random data with t-test feature selection
  • nlcvTT_SHS - Nlcv results on strong hetero signal data with t-test feature selection
  • nlcvTT_SS - Nlcv results on strong signal data a with t-test feature selection
  • nlcvTT_WHS - Nlcv results on weak signal data with t-test feature selection
  • nlcvTT_WS - Nlcv results on weak hetero signal data with t-test feature selection

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 8 scripts 202 downloads 9 exports 147 dependencies

Last updated 6 years agofrom:6d2e9bddb4. Checks:OK: 1 WARNING: 1 NOTE: 5. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-winNOTENov 14 2024
R-4.5-linuxWARNINGNov 14 2024
R-4.4-winNOTENov 14 2024
R-4.4-macNOTENov 14 2024
R-4.3-winNOTENov 14 2024
R-4.3-macNOTENov 14 2024

Exports:mcrPlotnlcvnldaIpamrIpamrMLpamrTrainrankDistributionPlotrocPlotscoresPlot

Dependencies:a4CoreabindannotateAnnotationDbiaskpassassertthatbase64encBiobaseBiocGenericsBiostringsbitbit64bitopsblobbslibcachemcaToolsclasscliclustercodetoolscommonmarkcpp11crayoncrosstalkcurldata.tableDBIDelayedArrayDEoptimRdiagramdigestdiptestdplyre1071evaluatefansifastmapflexmixfontawesomeforeachfpcfsfuturefuture.applygbmgdatagenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggvisglmnetglobalsgluegplotsgtoolshighrhtmltoolshtmlwidgetshttpuvhttrhwriterigraphipredIRangesiteratorsjquerylibjsonliteKEGGRESTkernlabKernSmoothknitrlaterlatticelavalazyevallifecyclelimmalistenvmagrittrMASSMatrixMatrixGenericsmatrixStatsmclustmemoisemimemlbenchMLInterfacesmodeltoolsmulttestnnetnumDerivopensslpamrparallellypillarpkgconfigplogrplspngprabclusprodlimprogressrpromisesproxyR6randomForestrappdirsRColorBrewerRcppRcppEigenrlangrmarkdownrobustbaseROCRrpartRSQLiteS4ArraysS4VectorssasssfsmiscshapeshinysourcetoolsSparseArraySQUAREMstatmodSummarizedExperimentsurvivalsysthreejstibbletidyselecttinytexUCSC.utilsutf8vctrswithrxfunXMLxtableXVectoryamlzlibbioc

nlcv

Rendered fromnlcv.Rnwusingutils::Sweaveon Nov 14 2024.

Last update: 2017-10-19
Started: 2017-10-19

Readme and manuals

Help Manual

Help pageTopics
function to compare the original matrix of correct classes to each component of the output object for a certain classifiercompareOrig
compute a confusion matrix for the optimal number of features for a given technique used in the nested loop cross validationconfusionMatrix.nlcv
Function to define a learning sample based on balanced samplinginTrainingSample
Wrapper around limma for the comparison of two groupslimmaTwoGroups
Misclassification Rate PlotmcrPlot
Nested Loop Cross-Validationnlcv
nlcv results on random data with random forest feature selectionnlcvRF_R
nlcv results on strong hetero signal data with random forest feature selectionnlcvRF_SHS
nlcv results on strong signal data a with random forest feature selectionnlcvRF_SS
nlcv results on weak signal data with random forest feature selectionnlcvRF_WHS
nlcv results on weak hetero signal data with random forest feature selectionnlcvRF_WS
nlcv results on random data with t-test feature selectionnlcvTT_R
nlcv results on strong hetero signal data with t-test feature selectionnlcvTT_SHS
nlcv results on strong signal data a with t-test feature selectionnlcvTT_SS
nlcv results on weak signal data with t-test feature selectionnlcvTT_WHS
nlcv results on weak hetero signal data with t-test feature selectionnlcvTT_WS
new MLInterfaces schema for lda from MASSnldaI
Instance of a learnerSchema for pamr modelspamrI
convert from 'pamrML' to 'classifierOutput'pamrIconverter
Wrapper function around the pamr.* functionspamrML
Function providing a formula interface to pamr.trainpamrTrain
predict 'pamrML' objectpredict.pamrML
print object 'nlcvConfusionMatrix'print.nlcvConfusionMatrix
print 'pamrML' objectprint.pamrML
'print' function for 'summary.mcrPlot' objectprint.summary.mcrPlot
Plot the Distribution of Ranks of Features Across nlcv RunsrankDistributionPlot
Produce a ROC plot for a classification model belonging to a given technique and with a given number of features.rocPlot
Function to Plot a Scores PlotscoresPlot
'summary' function for 'mcrPlot' objectsummary.mcrPlot
Methods for topTabletopTable topTable,nlcv-method topTable-methods
xtable method for confusionMatrix objectsxtable.confusionMatrix
xtable method for summary.mcrPlot objectsxtable.summary.mcrPlot